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COASTAL PROTECTION AND 
RESTORATION AUTHORITY 
This document was developed in support of the 2023 Coastal Master Plan being prepared by the 

Coastal Protection and Restoration Authority (CPRA). CPRA was established by the Louisiana 

Legislature in response to Hurricanes Katrina and Rita through Act 8 of the First Extraordinary Session 

of 2005. Act 8 of the First Extraordinary Session of 2005 expanded the membership, duties, and 

responsibilities of CPRA and charged the new authority to develop and implement a comprehensive 

coastal protection plan, consisting of a master plan (revised every six years) and annual plans. CPRA’s 

mandate is to develop, implement, and enforce a comprehensive coastal protection and restoration 

master plan.  
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EXECUTIVE SUMMARY 
Submerged aquatic vegetation (SAV) provides critical structural habitat for valuable nekton and 

wildlife species and can buffer the negative effects of land loss across coastal ecosystems. Landscape 

change and restoration efforts across coastal Louisiana will impact the occurrence, coverage, and 

species assemblages of SAV, and changes to these foundational species will have cascading impacts 

across food webs. To support the 2023 Coastal Master Plan efforts, a unique SAV model was 

developed to assess coverage and occurrence of SAV across aquatic waterbodies in response to 

environmental variables evaluated. 

This effort created a spatial model describing the probability of presence of SAV across the study area 

in response to changing conditions over the modeled time period. To develop the initial coverage data 

layer, we used remotely sensed Normalized Difference Vegetation Index (NDVI) and modified 

Normalized Difference Water Index (mNDWI) data from 2015-2018 to identify areas containing 

variable vegetation and water spectral reflectance. Key environmental variables evaluated included 

total suspended sediments (TSS), salinity, and exposure (to wind/waves). Seasonal estimates for TSS 

and salinity were used, as research indicates that seasonal environmental variability is a significant 

driver for SAV establishment. Seasonal salinity was derived from Coast-wide Reference Monitoring 

Station (CRMS) data, and seasonal TSS was estimated from hyperspectral imagery. Estimates of 

exposure have previously been provided by calculating fetch, but this proved to be too computationally 

intensive to be feasible, and we found distance to land to be a reasonable proxy for exposure. To 

represent geographic conditions and historical factors influencing SAV establishment and occurrence 

(e.g., variables too numerous and complex to model) we developed a basin variable that served as a 

proxy for complex historical, or prior, conditions, determined by the forested, fresh, intermediate, 

brackish, or saline (FFIBS) score. The final model included spring TSS, spring salinity, distance to land, 

and the basin priors. 

The model performed well for the area evaluated, correctly classifying SAV (as present or absent) 89% 

of the time (Kappa = 0.580). SAV probability of presence responded as expected to change in these 

environmental variables, with likelihood of occurrence decreasing in response to increasing spring 

TSS, spring salinity, and distance to land. However, the model was more accurate at predicting 

absence (true negative = 0.940) than predicting presence (true positive = 0.626), suggesting that the 

scale of the model may limit the ability to predict presence. Moreover, the simplicity of the model 

limited the accuracy in highly dynamic environments, for example near the outflow of diversions or 

areas of significant changes in salinity or TSS.  

Through incorporating underwater communities like SAV, this master plan provides a holistic view of 

coastal change and restoration. To create healthy ecological structure and function in wetland 

habitats, the submergent communities must be considered alongside the emergent habitats. As the 

benefits of SAV are increasingly recognized, both here in Louisiana and beyond, SAV restoration and 

the use of SAV communities in assessing and improving ecological condition are becoming both more 
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common and useful in applied restoration science and management.   
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1.0 INTRODUCTION 
To support the 2023 Coastal Master Plan efforts, a unique submerged aquatic vegetation (SAV) model 

was developed to assess coverage across aquatic waterbodies. The presence, cover, and species 

assemblages of SAV across coastal ecosystems is a critical component to understanding landscape 

scale response to changes in environmental conditions and restoration efforts. SAV provides 

significant ecosystem services in coastal systems, acting as a foundational species and ecological 

engineer, where healthy SAV beds create essential habitat for valuable nekton and wildlife species, 

improve water quality, and reduce coastal erosion (Gracia et al., 2017; Juston et al., 2013; Vӓstilӓ and 

Jӓrvelӓ, 2017; Yan et al., 2016). SAV response (establishment, growth, and species assemblages) to 

drivers (i.e., model inputs) differs from emergent vegetation in both magnitude and time of response 

(DeMarco et al., 2021; Kinney et al., 2014; Cho & Biber, 2016) and as such required distinctive inputs 

from the vegetation modeling component. To meet the needs of the large-scale Coastal Master Plan 

modeling effort, the SAV model was developed with the specific goal to create inputs (percent cover) 

needed to drive the habitat suitability model components.   
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2.0 METHODS 

2.1 STUDY AREA  

The study area for this portion of the effort comprised a coastal zone seen below in Figure 1.  

 

Figure 1. Map of Domain for SAV Model Development.  

 

2.2 SPATIAL DATA 

The occurrence and coverage of SAV is variable across large estuarine landscapes (DeMarco et al., 

2021). The parameters known to influence the likelihood of occurrence of SAV including exposure, 

turbidity, depth, and salinity (among others) are spatially distinctive across and between regions, 

basins, and estuaries. These drivers for occurrence are also temporally distinctive, varying across 

seasons both in terms of scale and in their relative importance to determining SAV occurrence. For 

example, high turbidity in the summer or fall when SAV communities are already established is a 

somewhat less important driver for occurrence than in the spring when the plants are germinating and 

more sensitive. For our area, seasons were delineated as follows: Summer=May 15 –September 14 

(daily mean water temperature >25°C), Fall=September 15 – November 14 (daily mean water 

temperature range=24°C – 16°C), Winter=November 15 – February 14 (daily mean water 

temperature < 15°C), and Spring=February 15 –May 14 (daily mean water temperature range=16°C 

– 24°.   

SAV PRESENCE/ABSENCE 

The development of a model of a spatial likelihood of occurrence of SAV required large amounts of 

data describing areas in which SAV has likely occurred in the past. While in previous efforts (DeMarco 
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et al., 2018) field data was used to estimate likelihood of occurrence, new remote sensing methods 

that provide extensive data points were used here. We developed a spatial data layer for current SAV 

conditions using a frequency of detection across the coast based on remotely sensed imagery 

(described below) and validated that layer and calibrated the model using field data from DeMarco et 

al. (2018). 

The frequency of detection of SAV data layer was created from data sets available in Couvillion (2021).  

The methods involved in the detection of SAV are described further in the metadata of those data 

sets, but a brief summary is included below: 

Remotely sensed detection of SAV is complicated by the fact that most wavelengths of light are rapidly 

attenuated by water. Detection of SAV can be further complicated by turbidity, including total 

suspended solids (TSS), water movement, and presence of floating aquatic vegetation (FAV). For these 

reasons, the detection of SAV in remotely sensed imagery on any given date is typically unreliable, 

except in particularly clear water conditions.  

The detection of SAV over longer time periods can be aided by the use of measures of variability in 

remotely-sensed signals or indices related to the presence of water and the presence of vegetation. In 

this case, we have observed measures of variability in the modified Normalized Difference Water Index 

(mNDWI), and the Normalized Difference Vegetation Index (NDVI) to be informative regarding the 

presence or absence of aquatic vegetation. An example of the standard deviation of all observations 

of the NDVI and mNDWI during a given year is shown in Figure 2.  Areas with annual standard 

deviations exceeding threshold values of 0.24 and 0.22 respectively for the NDVI and mNDWI are 

often indicative of aquatic vegetation and these values were used to create masks of areas of possible 

aquatic vegetation.   
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Figure 2: Standard Deviations of the NDVI and mNDWI during 2018 from 

Sentinel-2 Imagery. The number of observations varies in each pixel. Landsat 

has a revisit period of 16 days, thus leading to approximately 23 observations 

per year. Some areas of the coast are covered in overlap of satellite images, 

thus increasing those areas to 46 observations per year. However, cloud cover 

and other sources of contamination necessitate the exclusion of many of those 

observations. The standard deviations displayed in Figure 2 below draw from a 

mean of 18 observations per year (min:5, max:40). 

While the aforementioned datasets are informative with regard to the presence of floating aquatic 
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vegetation (FAV) and SAV isolating those distinct types of vegetation requires further analysis. As such, 

these datasets were used in conjunction with spectral values, known as “endmembers” which are 

indicative of these categories, to further classify FAV and SAV. A process known as Multiple 

Endmember Spectral Mixture Analysis (MESMA) was used to estimate the fraction of each pixel 

comprised of wetland, FAV, SAV, and water (Adams et al., 1993; Roberts et al.,1993; Settle and Drake, 

1993). Those fractional estimates are found in the individual bands and the datasets from Couvillion 

(2021). 

As the observation period for this effort was selected as 2015 through 2018, the Couvillion (2021) 

data set was subset temporarily to include only years during that time. These datasets were compiled 

and frequency of detection of SAV from 2015 to 2018 was calculated (Figure 3). The data can be 

difficult to see at the coastwide scale displayed in Figure 3 and as such, gridded maps of the 

frequency of detection data set are available in Appendix 1. 

 

Figure 3. Frequency of SAV Detection (2015-2018). 
 

As detection of SAV during any year during the 2015 to 2018 observation period is likely indicative of 

conditions suitable for the presence of SAV, detection (as indicated by frequency of detection 

exceeding 10% of observations) in any year was recoded to a presence category (Figure 4). The 

number of observations varies in each pixel, but greater than 97.8% of pixels have observations 

exceeding 12 observations per year with an overall pixel average of 23 observations per year. Some 

areas of the coast are covered in overlap of satellite images, thus increasing those areas to 46 

observations per year. However, cloud cover and other sources of contamination necessitate the 

exclusion of many of those observations. The standard deviations displayed in Figure 2 draw from a 
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mean of 18 observations per year (min:5, max:40). Because the frequency of SAV detection data layer 

is more vulnerable to errors of omission than those of commission defining the presence category as 

detection in any year, rather than all years, or a majority of years, mitigates the impact of these errors 

of omission. 

 

Figure 4. SAV Presence Detected (2015-2018). 

Water areas in which there were zero detections of SAV during the four observation years was recoded 

to an absence category. 

SEASONAL TOTAL SUSPENDED SOLIDS (TSS) 

Total suspended solids (TSS) concentrations influence the likelihood of occurrence for SAV by 

regulating light availability through the water column. While in general, increases in TSS that lead to 

decreases in light availability will decrease the likelihood of SAV, this is not the case for all species of 

SAV, particularly in dynamic estuaries. TSS can vary dramatically in coastal environments, and many 

species found in the Louisiana coastal zone are adapted to these fluctuations in water clarity 

(DeMarco et al., 2021; Holm Jr & Sasser, 2001; Kolker et al., 2018). Light availability is the key driver 

of SAV presence/occurrence, and result of the interaction between both TSS and depth. At shallow 

depths, high TSS may not have as great an impact on occurrence, while at high depths, TSS will have a 

stronger effect through regulating light penetration. 

We observed significant seasonal variation in turbidity across coastal Louisiana through spectral 

reflectance (DeMarco et al., 2018), and observed related seasonal impact on growth, establishment, 

and occurrence of SAV. While some monitoring programs do collect TSS, the spatial distribution and 

temporal frequency of such data collections is insufficient to interpolate seasonal spatial data sets. 

Given these limitations, we replicated methods in the DeMarco et al. (2018) to determine seasonal 

TSS across the coast. This method assumes correlations between the red wavelengths of light and 

TSS. Previous investigations have used similar hyperspectral imagery methods to estimate TSS 

(Jensen et al., 2022). While Jenson et al. (2022) produced a spatially variable estimate of TSS that 

was able to be applied to meet master plan needs, the limited time periods and portion of coastal 
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Louisiana area evaluated did not provide complete spatial or temporal coverage. To fill these gaps, we 

combined the spatial data from Jensen et al. (2022) with modeled TSS estimates from Delft-3D Mid-

Barataria Sediment Diversion modeling efforts. We intersected those TSS values with moderate-

resolution (30-meter) Landsat-8 Surface Reflectance imagery from similar time periods to develop a 

relationship between TSS (mg/L) and reflectance in Band 4 of the Landsat imagery. The resulting 

equation is shown below in Equation 1. 

TSS(mg/L) = 2.24796943e0.00419007 (Landsat-8 B4) 

R² = 0.619 

Equation 1: Formula for estimating TSS from Landsat-8 B4. 

 

The resulting formula estimates TSS for every cloud-free date of Landsat-8 imagery from 2015 

through 2018. The resulting spatial datasets were then averaged seasonally (Figure 5). 
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Figure 5. Seasonal Total Suspended Solids (mg/L) Estimated via Landsat 8 

Imagery. 
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SALINITY – SEASONAL AVERAGE 

The seasonal salinity data leveraged datasets created as part of the work described in Swam et al. 

(2022). These daily salinity data were interpolated from various sources including continuous data 

recorders from the Coastwide Reference Monitoring System (CRMS; CPRA, 2021) the United States 

Geological Survey (USGS, 2021) (Figure 7). Offshore data were obtained from the Hybrid Coordinate 

Ocean Model for salinity (GODAE, 2021) (Figure 7). For each source, daily salinity were obtained from 

January 1, 2015 through December 31, 2018 (see Swam et al., 2022 for more details).  

 

Figure 7. Salinity Data Locations of 457 CRMS Data Recorders (CPRA, 2021), 27 

USGS Data Recorders (USGS, 2021), and 392 Data Points from HYCOM (GODAE, 

2021) for 2015-2018. (Adapted from Swam et al., 2022.) 
 

Daily salinity data was interpolated using a spline with barriers. This technique estimates a surface in 

which the value passes through the input points exactly, while minimizing curvature of the surface 

between points. Barriers were enforced to prevent interpolation across features such as levees, 

impoundments, and basins (DeMarco et al., 2018). The resulting interpolated daily salinity surfaces 

were averaged seasonally to create means on a per pixel basis (Figure 8). 
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Figure 8. Seasonal Average Salinity (ppt), interpolated from daily data including 

CRMS, USGS, and modeled HYCOM data offshore. Salinities above 32 ppt are not 

depicted in this visualization. 



2023 DRAFT COASTAL MASTER PLAN. ICM-Wetlands SAV Updates 20 

 

DISTANCE TO LAND 

Exposure to wave energy and other physical processes are other forces known to influence the 

likelihood of occurrence of SAV; often via influence on establishment (e.g., current velocities). All other 

parameters being equal, greater exposure to wave energy lowers the likelihood of occurrence of SAV in 

estuarine environments/coastal Louisiana. A complete calculation of exposure requires a calculation 

of wave energy, which is dependent upon fetch, wind speed, direction and duration, and bathymetry. 

Moreover, these calculations are needed at fine time intervals (i.e., minutes), and are consequently 

computationally intensive. 

While exposure would have been the more appropriate parameter, early discussions regarding the 

feasibility of calculating exposure at the spatial and temporal scales of the model indicated such 

computationally intensive calculations would not be feasible. We therefore investigated distance to 

land as a proxy related to exposure. While distance to land is not directly a measure of exposure, it 

captures a good part of the variation caused by exposure and has been shown to relate to SAV 

presence (DeMarco et al., 2018), and in many cases, areas with smaller values of distance to land are 

often less exposed. Distance to land is easily calculated and computationally efficient, and as such, 

this proxy was used for 2023 Coastal Master Plan SAV modeling efforts. 

Distance to land for the baseline observation period was calculated using a mean 2015 to 2018 

landscape composition. A simple Euclidean distance calculation was performed to calculate the 

straight-line distance from each water pixel to the nearest land pixel. An example from the resulting 

spatial data set is shown below in Figure 9. 
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Figure 9. An Example from the Distance to Land Data Layer (2015-2018 median 

conditions). 
 

BASIN 

Coastal Louisiana contains 9 broad hydrologic basins originally delineated by CWPPRA (Figure 10). 

Many processes and parameters of interest that influence SAV vary in these basins but are 

complicated to quantify and can result in confounding variables for statistical analyses. and the 

historical influence of basin characteristics and conditions. As such, it was suspected that basin may 

be a valuable categorical value representing a proxy for these complex conditions which the SAV 

model might use in a predictive capacity. We therefore included a value for basin when intersecting 

the points.  
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Figure 10. Coastal Louisiana Basins. 
 

SAMPLE 

A random, stratified SAV presence/absence sample was taken from the data set described in the SAV 

Presence/Absence section above and intersected with the spatial layers described in the Seasonal 

Total Suspended Solids (TSS) section through the Basin section. The sample originally included 

500,000 points, shown below in Figure 11. 
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Figure 11. An Example of the Randomly Selected SAV Presence/Absence Points. 

2.3 MODEL DEVELOPMENT 

Here, we used the remotely sensed data (described above) to develop and model to predict the 

presence of SAV at the 30 m x 30 m spatial scale.  

MODELING FRAMEWORK 

We chose to use a Naïve Bayesian framework for this task. Naïve Bayesian models are generative 

classifiers (Ng & Jordan, 2001). That is, for a set of predictors, 𝑋 = {𝑋1, 𝑋2,…, 𝑋𝑛} and categorical 

response Y, calibration data are used to learn the distributions P(X|Y) and P(Y). These are then used to 

calculate P(Y|X) using Bayes Rule, 

𝑃(𝑌|𝑋) =
∏ 𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
, 
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where P(Y) is the prior probability y and P(X), in the case of a binomial response, is the constant 

𝑃(𝑋) = ∏ 𝑃(𝑋|𝑦 = 1)𝑃(𝑦 = 1) + ∏ 𝑃(𝑋|𝑦 = 0)𝑃(𝑦 = 0). Naïve Bayesian classifiers make the strong 

simplifying assumption that all the predictors are independent due to the response, i.e., 

𝑃(𝑋1|𝑋2,, 𝑦 = 1) = (𝑋1|𝑦 = 1). Despite the strong nature of this assumption, in practice, Naïve 

Bayesian classifiers often show robust performance and are often more efficient at smaller training 

samples than discriminant classifiers, such as logistic regression (Ng & Jordan, 2001). To classify a 

sample, X, the naïve Bayes classifier ℎ: 𝑋 ↦ 𝑌 predicts ℎ(𝑥) = 1 if and only if 

 

𝑙𝑜𝑔
∏ 𝑃(𝑋|𝑦 = 1)𝑃(𝑦 = 1)

∏ 𝑃(𝑋|𝑦 = 0)𝑃(𝑦 = 0)
> 0. 

 

MODEL SELECTION 

The data were split into a calibration sample of 250,000 cases and a test sample consisting of the 

remaining cases except those with any missing data. The final size of the test sample was 25,248 

rows. The initial set of environmental predictors included 12 measures developed from the spatial 

data (described above): 4 seasonal salinity measures, 4 seasonal measures of TSS, 3 measures of 

fetch (min, max, standard deviation), and distance to land. We used multiple criteria to narrow this set 

to those to be included in the model. First, since we hoped to only include predictors of SAV thought to 

be important drivers, we removed those predictors that were thought to be responses of SAV or with a 

potentially ambiguous relationship to SAV and/or were significantly correlated with one another. For 

example, SAV in our study area generally germinates in the spring season (based on water 

temperature/seasonal data), and once stands are established the plants are not as sensitive to 

changes in salinity and turbidity/TSS, so these variables ecologically would be less influential. This 

criterion resulted in the removal of Summer TSS, Fall Salinity and Summer Salinity, as ecologically 

these values were less critical in driving occurrence and further were highly correlated with other 

variables/seasons. Next, we wanted to minimize the computational load of the model while in 

production. This required that we consider the computational complexity of deriving each predictor. Of 

the remaining variables, in the context of the modeling environment of the master plan, those 

variables representing different aspects of fetch are much more computational complex than the 

others; thus, they were removed from the set.  

We used a quantitative method to choose among the remaining variables. The strategy was as follows, 

(1) fit each variable as a function of 𝑌, (2) use the residuals of those fits to perform a cluster analysis, 

such that each variable has higher residual correlation with other variables within its cluster than with 

those in other clusters, (3) use 𝑅𝑖
2 to select a variable from each cluster. This process attempts to 

maximize the performance of the naïve Bayes classifier by selecting variables with high correlation 

with SAV presence and low residual correlation with the other variables in the selection set.  

Before estimation, each remaining variable, 𝑋, was log-transformed to 𝑋′. Then for each 𝑋′, the 
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quantity 𝑃̂(𝑋′|𝑌) was estimated using simple linear regression. To perform clustering, the residuals of 

these models, ε̂ = 𝑋′ − 𝑋 ′̂, were estimated. The matrix 1 − |cor( ε̂)| was used as the distance matrix 

to perform hierarchical clustering with the hclust() function on the R platform (R Core Team, 2021). 

We chose the threshold 0.25 as the height at with the resulting tree should be cut to determine final 

groups. This resulted in three groups. One containing the remaining seasonal salinity measurements 

(spring and winter), one containing the remaining seasonal TSS measurements (fall, spring, and 

winter), and one consisting of distance to land. Selecting the variable with the highest 𝑅𝑖
2 from each 

group resulted in a final set consisting of spring salinity, distance to land, and spring TSS. The fitted 

parameters for the fits of each of the selected variables are shown in Table 1. Ecologically, the 

significant influence of spring variables on SAV is reasonable, as many species are more sensitive to 

light availability, disturbance, and stress during the seedling/germination stage (Doyle & Smart, 2001; 

Hillmann et al., 2019; Jarvis & Moore, 2008; Strasizar et al., 2013). 

MODEL BASIN PRIOR ESTIMATION  

To capture additional geographical and historical factors in the classifier, we calculated a different 

value for the prior conditions, 𝑃(𝑌), for each combination of hydrological basin and vegetation 

community type as defined by the FFIBS score for the vegetation community of the nearest the target 

pixel (Table 1). Essentially, the priors give an estimate of probability by basin before 

intervention/changes to conditions as determined by the environmental variables and inputs for the 

final model. These basin priors were calculated from the calibration data using logistic regression as 

the conditional probability of SAV.  

Table 1. Parameters of 𝑃̂(𝑋′|𝑌) for selected predictor variables 

 SPRING SALINITY DISTANCE FROM LAND SPRING TSS 

Intercept 1.106 5.825 3.423 

Slope -0.927 -1.945 -0.797 

Residual SD 1.511 1.354 0.980 

 

PREDICTOR IMPORTANCE ANALYSIS 

To examine the effect of geographical information in the basin prior and each of the predictors on 

model performance, we generated predictions for each of the cases in the testing data for sub-models 

where one element, either the prior or one predictor, was removed (Table 2). As with the full model, we 

calculate the accumulate cases within basins to help determine how the importance of each 

parameter may along the coast. 
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Table 2. Effects of removal of basin priors 

Hydrologic Basin Intercept Slope 

Atchafalaya Delta -1.780 -0.289 

Barataria -1.158 -0.067 

Breton Sound 0.569 -0.178 

Calcasieu-Sabine 1.371 -0.256 

Mermentau -1.165 -0.076 

Mississippi River Delta -0.727 -0.333 

Pontchartrain -1.327 -0.105 

Teche-Vermilion -1.391 -0.182 

Terrebonne 0.522 -0.146 



2023 DRAFT COASTAL MASTER PLAN. ICM-Wetlands SAV Updates 27 

 

3.0 RESULTS 

3.1 RESULTS SUBSECTION 

We applied the naïve Bayesian classifier defined by the prior and set of fitted distributions of the 

environmental variables to the test data to quantify its performance. The resulting confusion table for 

one partition of the data is shown in Table 3 and visualized in Figure 12. The confusion table 

corresponds to a correct classification rate (ccr) of 0.898 and kappa statistic of 0.580. The kappa 

statistics is proportion cases correctly classified over what would be expected by a random classifier. 

For example, if a classifier has a ccr of 0.75 and the expected performance of a random classifier is a 

ccr of 0.5, then the test classifier has a kappa statistic of 0.5, which means it accounts for 0.5 of the 

incorrect classification rate of a random classifier.  

Table 3. Confusion matrix resulting from applying the Naïve Bayesian classifier to 

the 25,248 cases in the testing data set 
 

 Observed  

Predicted Absent Present 

Absent 20387 1334 

Present 1297 2230 
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Figure 12. Distributions of the Predicted Probability of SAV Presence in the Test 

Data Set Conditional on its Actual Presence. The boxes show the interquartile 

range. The thick black lines show the medians, and the whiskers show the 

minimum and maximum of non-outliers in each group. 

To examine the performance of the model geographically, we calculated both the ccr and kappa 

statistic for each of the hydrological basins (Table 4). For all basins, except Atchafalaya Delta, the 

Kappa statistic was near 0.5 or greater, indicating generally good performance across the coast, but 

with potential room for improvement in the Atchafalaya Delta Basin.  

Table 4. Correct Classification Rate (CCR) and Kappa Statistic for the Naïve 

Bayesian Classifier tallied by hydrological basin 

Hydrologic Basin CCR Kappa 

Atchafalaya Delta 0.91 0.238 

Barataria 0.895 0.465 

Breton Sound 0.864 0.642 

Calcasieu-Sabine 0.797 0.522 

Mermentau 0.914 0.683 

Mississippi River Delta 0.911 0.487 

Pontchartrain 0.942 0.467 

Teche-Vermilion 0.933 0.49 

Terrebonne 0.896 0.62 
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PREDICTOR IMPORTANCE ANALYSIS  

Removal of the geographic information, in the form of the prior, or any of the three predictors reduced 

both the correct classification rate and the kappa statistics (Figure 13). Removal of the prior had the 

biggest negative impact on the ccr, although in absolute terms the difference was quite small (Figure 

13a). Removal of distance to land from the model had the largest impact on the kappa statistics, 

reducing it from kappa=0.552, for the full model, to kappa= 0.409 (Figure 13c). At the basin-scale, 

removal of predictors has little effect on the ccr, which is quite high under all conditions (Table 5), but 

removal of predictors has large and varying effects on the kappa statistic (Table 6). For example, for 

the Mississippi River Delta Basin, the removal of the geographic information in the prior, spring 

salinity, or distance from land causes large reductions in the kappa statistic reducing it from 0.487, to 

0.196, 0.094, and 0.02, respectively. Removal of distance from land also had large effects of the 

performance of the model in the Atchafalaya Delta Basin, reducing kappa from 0.238 to 0.03, 

Pontchartrain (from 0.467 to 0.09), and Teche-Vermilion (from 0.49 to 0.03).  
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Figure 13. Distributions of the Predicted Probability of SAV Presence in the Test 

Data Set Conditional on its Actual Presence Resulting from the Removal of 

Individual Predictors. The boxes show the interquartile range. The thick black 

lines show the medians, and the whiskers show the minimum and maximum of 

non-outliers in each group. 
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Table 5. The basin-scale correct classification rate resulting of removing 

predictors 

HYDROLOGIC BASIN 

NO GEOGRAPHIC 

INFO. NO SALINITY 

NO DIST. FROM 

LAND 

NO 

SPRING 

TSS 

Atchafalaya Delta 0.935 0.929 0.92 0.92 

Barataria 0.885 0.888 0.87 0.893 

Breton Sound 0.821 0.841 0.86 0.828 

Calcasieu-Sabine 0.741 0.791 0.81 0.788 

Mermentau 0.914 0.917 0.88 0.88 

Mississippi River Delta 
0.885 0.883 

0.88 
0.883 

Pontchartrain 0.926 0.935 0.94 0.933 

Teche-Vermilion 0.926 0.925 0.93 0.933 

Terrebonne 0.875 0.892 0.86 0.878 

 

Table 6. The basin-scale correct classification rate resulting of removing 

predictors 

HYDROLOGIC BASIN 

NO GEOGRPAHIC 

INFO. 

NO 

SALINITY 

NO DIST. FROM 

LAND 

NO 

SPRING 

TSS 

Atchafalaya Delta 0.374 0.2 0.03 0.474 

Barataria 0.452 0.423 0.18 0.346 

Breton Sound 0.46 0.575 0.59 0.517 

Calcasieu-Sabine 0.309 0.542 0.54 0.508 

Mermentau 0.625 0.65 0.29 0.509 

Mississippi River Delta 0.196 0.094 0.02 0.458 

Pontchartrain 0.484 0.411 0.09 0.311 

Teche-Vermilion 0.409 0.309 0.03 0.445 

Terrebonne 0.5 0.618 0.44 0.549 
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4.0 DISCUSSION 
Developing a model to represent assemblages of SAV across a large wetland landscape spanning a 

dynamic ecosystem with distinct environmental and ecological gradients (e.g., coastal Louisiana) is a 

challenging task. Individual species and assemblages of species of SAV respond to changes in 

environmental conditions based on their unique species physiology – developing a model to represent 

all possible species across a large coastal landscape required input from experts in ecology and 

spatial and statistical analyses as well as knowledge of datasets collected in-situ from field 

experiments in combination with remotely sensed imagery. This iteration of the SAV model achieved 

the goal of being as simple as possible while maintaining an acceptable level of accuracy across a 

large and dynamic landscape. Applications of these results should be evaluated in that context. 

This model demonstrated high levels of accuracy across the study area, differing significantly from a 

random classifier, as indicated by the high ccr and kappa statistic. Additional measures (Table 7) 

explain that this model performed especially well at predicting absence (true negative = 0.940), and, 

while still biologically meaningful, performed less well at predicting presence (true positive/sensitivity 

rate = 0.626). Lowered performance at predicting presence can likely be attributed to the relatively 

low instances of SAV presence across the study area (i.e., all of coastal Louisiana) as indicated by a 

low prevalence rate (0.141). The prevalence rate performance measure describes how often presence 

was actually observed, and here, indicates that most of the training data used to design the model 

were absence values. This suggests that the spatial scale of the model limits the ability for increased 

accuracy at predicting presence. For increased accuracy describing presence, smaller scale models, 

either in unique basins or aquatic zones (discussed later) may be helpful.  

We further evaluated model performance by examining the spatial estimates of likelihood of 

occurrence and change in likelihood of occurrence as determined by the input variables at 3 

timesteps – initial (Y02, Year 26, and the final timestep (Y52). The model performed as expected in 

response to the driving variables with likelihood of occurrence decreasing in response to increases in 

spring salinity, spring TSS, and distance to land. In other words, changes in probability of SAV 

occurrence over time (Figure 14) are reflective of predicted changes in these conditions, e.g., model 

inputs. Notable areas of interest include Sabine Lake in western Louisiana, and areas of significant 

freshwater outflow. In Sabine Lake (Figure 15) likelihood of SAV is predicted to increase markedly from 

initial conditions (Y02) to final model year (Y52). Currently, Sabine Lake supports virtually no SAV 

(DeMarco et al., 2018 and 2021) presumably due to a combination of salinity and turbidity/TSS 

factors, so these results were unexpected as environmental conditions/drivers would have to change 

dramatically to trigger establishment of SAV, both in the model and on the ground. Spatial review of 

the model inputs show that spring salinity is predicted to decrease significantly around Sabine Lake, 

leading to the increase in likelihood of occurrence, the model performing as expected. Overall, there 

was low probability of occurrence for initial conditions (Figure 16a) around freshwater outflow areas 

(e.g., the Mississippi River, Wax Lake, Atchafalaya deltas, and the Davis Pond Freshwater Diversion), 
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and a decrease in future probability estimates of occurrence. Observed data indicate that this is 

currently not the case, and that SAV is generally present, sometimes in abundance, where depth is not 

preventative. Analysis of the model input as spatial layers show these areas were experiencing high 

TSS loads both initially (Figure 15b) and in future, which is realistic, but this resulted in a dramatic 

reduction in modeled SAV occurrence, which is not always the case. This model appears to 

underestimate occurrence at the outflow of diversions and freshwater sources, a problem that is likely 

pervasive in modeling SAV across outflow areas in dynamic estuaries. Model improvements in future 

efforts may include more localized models or models tailored to diversion and/or more dynamic 

environments.   

Another potential benefit of examining more localized models can be demonstrated by the relatively 

large impact of removing the basin prior on the kappa statistic. When we removed the basin priors the 

kappa statistic decreased (Figure 13a), indicating that the complex basin conditions influence the 

presence of SAV across the coast. Basin priors represent both historic or long-term conditions and 

overall regimes in each geographic region. While SAV does respond quickly to changes in 

geomorphology and water quality, these longer term conditions and regimes can essentially serve as a 

background landscape for the establishment of SAV, and influence the likelihood of occurrence. Each 

basin appears to support unique combinations of SAV that are responding to similarly unique 

conditions and the basin priors function as proxies for the suite of environmental and biological 

factors that influence species assemblages and SAV establishment. Moreover, these basins are 

reflective of current conditions and past conditions, capturing the legacy of SAV establishment and 

communities that develop from historic patterns (which are notoriously difficult to measure/estimate). 

Depending on the level of accuracy and spatial scale needed, SAV occurrence models could be 

developed on a basin scale that reflect the unique conditions throughout. Potential improvements for 

specific basins may be possible with the inclusion of additional predictor variables. A list of which 

candidate variables to test should be selected by system experts. 

Data and modeling from other efforts indicate that physical exposure, specifically wave power and 

fetch, has a significant impact on SAV occurrence in coastal areas (DeMarco et al., 2018; Fonseca & 

Bell, 1998; Gurbisz et al., 2016; Pulich & White, 1991; Robbins & Bell, 2000; Santos et al., 2011). For 

this effort, fetch was not logistically feasible as it was too computationally intensive to obtain, due to 

both time steps and spatial scale. For these master plan needs, the distance to land function proved 

to be sufficient at given the scale and end purposes. If more accuracy and greater degree of spatial 

resolution was desired, the inclusion and/or improvement of fetch calculation should be incorporated.  

In general and overall, more precise results would be possible in a scaled down model used for local 

applications using field derived data in combination with remotely sensed data. This model version 

provided a coarse resolution SAV data representing a large coastal landscape. Identifying aquatic 

zones similar to the emergent marsh classifications described by FFIBS, either by basins or at other 

spatial scales, and identifying a representative SAV species (DeMarco et al., 2021) could provide more 

accurate modeling results as well as quickly describe aquatic conditions including long-term salinity 

and as well as salinity variability, water depth, and exposure. 
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Understanding how changes in key environmental drivers influence SAV occurrence, distribution, and 

coverage are critical to our ability to predict possible future alterations to ecological structure (i.e., 

trophic webs) and develop restoration and protection plans accordingly. While outputs from this SAV 

modeling effort are largely generated to provide habitat information, these habitats are increasingly 

recognized for benefits beyond those that they provide to fish and wildlife species. SAV community 

assemblages represent unique aquatic habitats which differ from more commonly discussed 

emergent marsh zones that are classified by long-term salinity and hydrology.  

Table 7. Additional performance measures from confusion matrix 

Measure Value 

Accuracy/CCR 0.896 

Misclassification 0.104 

True positive/Sensitivity 0.626 

False positive/Specificity 0.060 

True negative 0.940 

Precision 0.632 

Prevalence 0.141 
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Figure 14: Change in Probability of Occurrence of SAV from Initial Conditions 

(Y02) to Final Time step (Y52). 
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Figure 15: Change in Probability of Occurrence of SAV from Initial Conditions 

(Y02) to Final Time Step (Y52) in Sabine Lake, LA. 
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Figure 16: Initial Conditions (Y02) Probability of SAV Occurrence (a) and Modeled 

Total Suspended Solids (b) in the Wax Lake and Atchafalaya River Outflow Areas. 
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APPENDIX 1: FREQUENCY OF 
DETECTION OF SAV GRIDDED 

MAPS 

 

Figure A1. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30.5°N to 30°N and 94°W to 93.5°W. 
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Figure A2. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30.5°N to 30°N and 93.5°W to 93.0°W. 
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Figure A3. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30.5°N to 30°N and 91°W to 90.5°W. 
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Figure A4. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30.5°N to 30°N and 90.5°W to 90°W. 
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Figure A5. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30.5°N to 30°N and 90°W to 89.5°W. 
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Figure A6. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30.5°N to 30°N and 89.5°W to 89°W. 
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Figure A7. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30°N to 29.5°N and 94°W to 93.5°W. 
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Figure A8. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30°N to 29.5°N and 93.5°W to 93°W. 
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Figure A9. Visualization of the Frequency of SAV Detection layer in a 30'x30' cell 

from approximately 30°N to 29.5°N and 93°W to 92.5°W. 
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Figure A10. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 92.5°W to 92°W. 

 



2023 DRAFT COASTAL MASTER PLAN. ICM-Wetlands SAV Updates 51 

 

 

Figure A11. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 92°W to 91.5°W. 
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Figure A12. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 91.5°W to 91°W. 
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Figure A13. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 91°W to 90.5°W. 

 



2023 DRAFT COASTAL MASTER PLAN. ICM-Wetlands SAV Updates 54 

 

 

Figure A14. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 90.5°W to 90°W. 
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Figure A15. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 90°W to 89.5°W. 
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Figure A16. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 30°N to 29.5°N and 89.5°W to 89°W. 
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Figure A17. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 29.5°N to 29°N and 91.5°W to 91°W. 
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Figure A18. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 29.5°N to 29°N and 91°W to 90.5°W. 
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Figure A19. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 29.5°N to 29°N and 90.5°W to 90°W. 

 



2023 DRAFT COASTAL MASTER PLAN. ICM-Wetlands SAV Updates 60 

 

 

Figure A20. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 29.5°N to 29°N and 90°W to 89.5°W. 

 



2023 DRAFT COASTAL MASTER PLAN. ICM-Wetlands SAV Updates 61 

 

 

Figure A21. Visualization of the Frequency of SAV Detection layer in a 30'x30' 

cell from approximately 29.5°N to 29°N and 89.5°W to 89°W. 

 

 


